Thermo-Diffusive Flame Speed Adjustment and its Application to Hydrogen Engines

Author:

Hernandez Ignacio,Turquand d'Auzay Charles,Penning Richard,Shapiro Evgeniy,Hughes John

Abstract

<div class="section abstract"><div class="htmlview paragraph">Practical direct injection hydrogen combustion applications typically require operating the engine in the lean regime. Lean hydrogen flames feature strong thermo-diffusive instability effects making 3D CFD simulations challenging. In particular where the calibrated model is required to operate across a range of equivalence ratios without adjustment and provide accurate results on coarse grids necessitated by the run-times of 3D CFD. In this paper we present a 3D CFD study of a Euro VI HD diesel engine converted to operate on hydrogen gas using direct injection. A scaling methodology recently proposed for conversion from constrained to freely propagating flame based on DNS data is implemented. A laminar flame speed tabulation is developed based on the conversion of 1D results obtained from direct kinetics simulations to freely propagating flame expression considering the behaviour of the thermo-diffusive instability for a wide range of pressures, temperatures and equivalence ratios. The resulting approach is applied to model engine operation under a set of fuelling conditions ranging from <i>λ</i> = 2.5 to <i>λ</i> = 3.5 within the framework of a G-equation/RANS combustion model with tabulated kinetics. Discussion of the meshing requirements is also presented. The resulting model is demonstrated to accurately predict the trends in engine performance and correctly capture the flame acceleration driven by thermo-diffusive effects.</div></div>

Publisher

SAE International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3