Proposal and Validation of 3D-CFD Framework for Ultra-Lean Hydrogen Combustion in ICEs

Author:

Sfriso Stefano1,Berni Fabio1,Breda Sebastiano1,Fontanesi Stefano1,Ramalho Leite Caio2,Brequigny Pierre2,Foucher Fabrice2

Affiliation:

1. Universita di Modena e Reggio Emilia

2. Universite d'Orleans

Abstract

<div class="section abstract"><div class="htmlview paragraph">In recent months, the increasing debate within the European Union to review the ban on internal combustion engines has led to the pursuit of environmentally neutral solutions for ICEs, as an attempt to promote greater economic and social sustainability. Interest in internal combustion engines remains strong to uphold the principle of technological neutrality. In this perspective, the present paper proposes a numerical methodology for 3D-CFD in-cylinder simulations of hydrogen-fueled internal combustion engines. The combustion modelling relies on G-equation formulation, along with Damköhler and Verhelst turbulent and laminar flame speeds, respectively. Numerical simulations are validated with in-cylinder pressure traces and images of chemiluminescent hydrogen flames captured through the piston of a single-cylinder optical spark-ignition engine. To mitigate the uncertainties related to the modeling of mixture stratification and injection, hydrogen is port-injected and continuously supplied into the intake pipe to ensure mixture homogeneity. Therefore, the main challenge in this study is represented by an accurate characterization of the combustion propagation, which is the key element in the validation of the computational framework. In this regard, a remarkable alignment between simulations and experiments is achieved in terms of pressure traces and flame imaging, evidencing the model’s capabilities. The validation is carried out at different equivalence ratios, demonstrating the reliability of the numerical framework to consistently reproduce results without the need for case-by-case adjustments.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3