Author:
Vigil Cole Mackenzie,Kaayal Omar,Szepelak Alexander
Abstract
<div class="section abstract"><div class="htmlview paragraph">Regenerative braking is present in almost all electric vehicle models and as the demand for electric vehicles grows, the types of electric vehicles grow as well. Regenerative braking allows for an electric vehicle to convert a vehicle's kinetic energy into electrical potential energy by utilizing the electric motors to slow the vehicle. This potential energy is then returned to the vehicle’s battery allowing for the vehicle’s range to be extended. The vehicles tested during the study were as follows: 2022 Rivian R1T, 2022 Tesla Model Y, 2022 Hyundai Ioniq 5, 2020 Tesla Model 3, 2021 Volkswagen ID.4, and 2021 Ford Mustang Mach-E. Although regenerative braking slows the vehicle, not all levels of regenerative braking bring the vehicle to a complete stop. The study showed that there are typically two types of regenerative braking. The first, commonly referred to as one-pedal driving, will bring a vehicle to a complete stop without the application of the brake pedal. The other slows the vehicle to a pre-determined speed before the regenerative braking is no longer applied. This type of regenerative braking allowed the vehicle to move forward, or coast, after regenerative braking was no longer applied. This study sought to determine and compare the average deceleration from regenerative braking, without applying the brake pedal, of each vehicle at all levels of regeneration. Tests were conducted at speeds of approximately 15 mph, 30 mph, 45 mph, and 60 mph. As electric vehicles introduced the ability to change the vehicles performance and driving characteristics through software updates, it may be necessary to complete testing periodically.</div></div>
Reference7 articles.
1. Boretti , A.
Analysis of the Regenerative Braking Efficiency of a Latest Electric Vehicle SAE Technical Paper 2013-01-2872 2013 https://doi.org/10.4271/2013-01-2872
2. Lambert , F.
Tesla (TSLA) Still Dominates US Electric Car Market with 68% Market Share Electrek August 15, 2022 https://electrek.co/2022/08/15/tesla-tsla-dominates-us-electric-car-market-share/
3. Siddiqui , O. ,
Simacek , D. ,
Hoang , R. ,
Famiglietti , N.
et al.
Characterizing Regenerative Coast-Down Deceleration in Tesla Model 3, S, and X SAE Technical Paper 2020-01-0883 2020 https://doi.org/10.4271/2020-01-0883
4. Lambert , F.
Tesla Mysteriously Removes Regenerative Braking Strength Option in New Cars Electrek October 27, 2020 https://electrek.co/2020/10/27/tesla-removes-regenerative-braking-strenght-option-new-cars/
5. White , K. ,
Merala , R. ,
Desautels , D. , and
Ellis-Caleo , T.
Rollout Deceleration of Modern Passenger Vehicles SAE Technical Paper 2012-01-0616 2012 https://doi.org/10.4271/2012-01-0616
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献