Ignition and Combustion Characteristics of OME <sub>3-5</sub> and N-Dodecane: A Comparison Based on CFD Engine Simulations and Optical Experiments

Author:

Wiesmann Frederik,Bauer Esra,Kaiser Sebastian A.,Lauer Thomas

Abstract

<div class="section abstract"><div class="htmlview paragraph">Synthetic fuels derived from renewable power sources, so-called e-fuels, will play a crucial role in achieving climate-neutral future mobility because they can be used in the existing fleets and in hard-to-decarbonize applications. In particular e-fuels that contain oxygen in their chemical structure can also burn more cleanly in terms of soot formation. For compression-ignition engines, polyoxymethylene dimethyl ethers (PODEs or OMEs) are among the most promising candidates for such oxygenated e-fuels.</div><div class="htmlview paragraph">Here, we investigated the characteristics of injection and combustion of OME<sub>3-5</sub> mixture compared to n-dodecane, a reference diesel-like fuel. Both single and multi-injection, comprising a short pilot injection, is used. Experiments were performed in a single-cylinder optically accessible Bowditch-type engine, injecting with 1500 bar pressure with a 3-hole injector (Spray B of the Engine Combustion Network). Liquid and vapor penetration were measured by imaging the spray illuminated by a pulsed light-emitting diode (LED). Ignition delay, lift-off length and flame morphology were investigated based on multi-spectral high-speed imaging of chemiluminescence. For simulations, a 3D CFD engine model was developed. The combustion simulation was performed on a 120° sector mesh onto which flow and turbulence fields from a gas exchange simulation are mapped prior to fuel injection. The model accounts for piston-ring blow-by. For the combustion of both fuels, detailed reaction mechanisms were used. In general, quite good agreement between model predictions and experimental results was achieved. In particular the consideration of blow-by losses by the CFD model produced a realistic behavior during the high-pressure cycle.</div><div class="htmlview paragraph">Both CFD simulation and optical experiments, reveal significant differences between the two fuels. For OME, the liquid phase penetrates further into the combustion chamber, the ignition delay is shorter compared to n-dodecane and the equivalence ratio of OME during combustion is significantly leaner.</div></div>

Publisher

SAE International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3