Estimation of Tire-road Friction Limit with Low Lateral Excitation Requirement Using Intelligent Tire

Author:

Xu Nan1,Zhou Jianfeng1,Tang Zepeng1,Zhang Zeyang2

Affiliation:

1. Jilin University

2. Dongfeng Motor Corporation

Abstract

<div class="section abstract"><div class="htmlview paragraph">Tire-road friction condition is crucial to the safety of vehicle driving. The emergence of autonomous driving makes it more important to estimate the friction limit accurately and at the lowest possible excitation. In this paper, an early detection method of tire-road friction coefficient based on pneumatic trail under cornering conditions is proposed using an intelligent tire system. The previously developed intelligent tire system is based on a triaxial accelerometer mounted on the inner liner of the tire tread. The friction estimation scheme utilizes the highly sensitive nature of the pneumatic trail to the friction coefficient even in the linear region and its approximately linear relationship with the excitation level. An indicator referred as slip degree indicating the utilization of the road friction is proposed using the information of pneumatic trail, and it is used to decide whether the excitation is sufficient to adopt the friction coefficient estimate. The friction coefficient is estimated by the ratio of the normalized lateral force and the nonlinear adaptation of the slip degree. The tire forces and pneumatic trail are estimated by neural networks. The experimental validation demonstrates that the pneumatic trail has a good potential to precisely predict the friction coefficient at a low excitation under cornering conditions.</div></div>

Publisher

SAE International

Subject

Artificial Intelligence,Mechanical Engineering,Fuel Technology,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3