The Integrated Trajectory Tracking, Yaw Stability and Roll Stability Model Predictive Control for Autonomous Vehicle in Limited Handling Condition

Author:

Li Boyuan,Li Wenfei,Hua Wei,Velenis Efstathios

Abstract

<div class="section abstract"><div class="htmlview paragraph">In the current literature, the research studies on the trajectory tracking control and stability control strategy for autonomous vehicles in limited condition mostly focus on the yaw plane control, but few of the studies have considered the combined control performance of trajectory tracking, yaw and roll stability, and the roll stability is critical under the extreme cornering condition for autonomous vehicles. Aiming at the above shortages, this study designs the model predictive control (MPC) strategy for the autonomous vehicles under the limited handling condition, which integrates the front and rear wheel active steering control, four-wheel independent drive and braking control and active suspension control to comprehensively improve the trajectory tracking accuracy, yaw plane stability and roll plane stability of the vehicle under the extreme condition. In the internal prediction model of the MPC, the yaw plane dynamics, roll plane dynamics and suspension system models are considered to better coordinate the yaw plane and roll plane dynamics control. Also the different control delays of steering, driving, braking and suspension control actuators are considered in the model. In addition, in order to improve the vehicle yaw stability, the soft constraints of wheel longitudinal slip and lateral side-slip angle are designed in the optimization objective function of the MPC. Furthermore, based on the analysis on the coupling effect of the steering, traction or brake and active suspension control on the trajectory tracking and vehicle dynamics stability, the scaling factors of MPC optimization cost function are normalize and carefully tuned to achieve the best performance. Finally, the effectiveness and computational efficiency of the designed integrated MPC strategy is verified by simulation based on high fidelity vehicle dynamics model.</div></div>

Publisher

SAE International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid model predictive control for vehicle trajectory tracking with integrated attitude adjustment;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-04-09

2. How to Guarantee Driving Safety for Autonomous Vehicles in a Real-World Environment: A Perspective on Self-Evolution Mechanisms;IEEE Intelligent Transportation Systems Magazine;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3