Formal Verification of Autonomous Vehicles: Bridging the Gap between Model-Based Design and Model Checking

Author:

Rao Ananya,Wang Yue

Abstract

<div class="section abstract"><div class="htmlview paragraph">Formal verification plays an important role in proving the safety of autonomous vehicles (AV). It is crucial to find errors in the AV system model to ensure safety critical features are not compromised. Model checking is a formal verification method which checks if the finite state machine (FSM) model meets system requirements. These requirements can be expressed as linear Temporal logic (LTL) formulae to describe a sequence of states with linear Temporal properties to be satisfied. NuSMV is a dedicated software for performing model checking based on Temporal logic formulae on FSM models. However, NuSMV does not provide model-based design. On the other hand, Stateflow in MATLAB/SIMULINK is a powerful tool for designing the model and offers an interactive Graphical User Interface (GUI) for the user/verifier but is not as efficient as NuSMV in model checking. Hence, model transformation becomes vital to convert the AV model in Stateflow to an input language of model checking software such as NuSMV. In this paper, we model an AV using Stateflow, which consists of cruise control, lane change/abortion, obstacle avoidance and gap maintenance blocks in the form of FSMs. We design an automatic verification tool to perform model transformation using a C compiler with NuSMV library included. Guard conditions are represented by Boolean expressions to capture the transition sequence between different blocks. LTL specifications of safety critical requirements are verified to guarantee the validity of the AV system design. When guard conditions fail, i.e., system requirements are not met, the verification tool will give a counterexample as the output. A case study is performed to show how this verification tool can help designers to make modifications based on the counterexamples to better meet the system requirements. We also perform a benchmark verification using the design verifier in SIMULINK to compare the performance. <span class="xref"><sup>1</sup></span></div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3