Drive-Thru Climate Tunnel: A Proposed Method to Study ADAS Performance in Adverse Weather

Author:

Pao Wing Yi,Li Long,Agelin-Chaab Martin,Komar John

Abstract

<div class="section abstract"><div class="htmlview paragraph">The advancement of Advanced Driver Assistance System (ADAS) technologies offers tremendous benefits. ADAS features such as emergency braking, blind-spot monitoring, lane departure warning, adaptive cruise control, etc., are promising to lower on-road accident rates and severity. With a common goal for the automotive industry to achieve higher levels of autonomy, maintaining ADAS sensor performance and reliability is the core to ensuring adequate ADAS functionality. Currently, the challenges faced by ADAS sensors include performance degradation in adverse weather conditions and a lack of controlled evaluation methods. Outdoor testing encounters repeatability issues, while indoor testing with a stationary vehicle lacks realistic conditions. This study proposes a hybrid method to combine the advantages of both outdoor and indoor testing approaches in a Drive-thru Climate Tunnel (DCT). The proposed DCT features a test section that is isolated from the surrounding environment and allows a vehicle to move through a volume of precisely simulated precipitation. It is constructed as a model scale prototype for concept demonstration and preliminary studies. In addition, the DCT’s modular design allows for varying distances, vehicle speeds, and precipitation rates during testing. The model vehicle is equipped with common ADAS sensors, such as optical cameras and LiDARs, which are known to be heavily affected by adverse weather. Quantification metrics are designed and applied to ADAS datasets to investigate sensor performance in conjunction with related phenomena, such as the perceived rain characteristics of a moving vehicle. Therefore, the DCT provides a platform to bridge the gap between outdoor and indoor weather testing for ADAS sensors and open opportunities for sensor perception developments.</div></div>

Publisher

SAE International

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3