An Investigation of ADAS Camera Performance Degradation Using a Realistic Rain Simulation System in Wind Tunnel

Author:

Li Long1,Pao Wing Yi1,Howorth Joshua1,Agelin-chaab Martin1,Roy Langis1,Komar John2,Knutzen Julian3,Baltazar Alex4,Muenker Klaus5

Affiliation:

1. Ontario Tech University

2. Ace Climatic Wind Tunnel

3. Magna Advanced Technologies

4. Magna Exterior Systems

5. Magna Exteriors GmbH

Abstract

<div class="section abstract"><div class="htmlview paragraph">Modern advances in the technical developments of Advanced Driver Assistance Systems (ADAS) have elevated autonomous vehicle (AV) operations to a new height. Vehicles equipped with sensor based ADAS have been positively contributing to safer roads. As the automotive industry strives for SAE Level 5 full driving autonomy, challenges inevitably arise to ensure ADAS performance and reliability in all driving scenarios, especially in adverse weather conditions, during which ADAS sensors such as optical cameras and LiDARs suffer performance degradation, leading to inaccuracy and inability to provide crucial environmental information for object detection. Currently, the difficulty to simulate realistic and dynamic adverse weather scenarios experienced by vehicles in a controlled environment becomes one of the challenges that hinders further ADAS development. While outdoor testing encounters unpredictable environmental variables, indoor testing methods, such as using spray nozzles in a wind tunnel, are often unrealistic due to the atomization of the spray droplets, causing the droplet size distributions to deviate from real-life conditions. A novel full-scale rain simulation system is developed and implemented into the ACE Climatic Aerodynamic Wind Tunnel at Ontario Tech University with the goal of quantifying ADAS sensor performance when driving in rain. The designed system is capable of recreating a wide range of dynamic rain intensity experienced by the vehicle at different driving speeds, along with the corresponding droplet size distributions. Proposed methods to evaluate optical cameras are discussed, with sample results of object detection performance and image evaluation metrics presented. Additionally, the rain simulation system showcases repeatable testing environments for soiling mitigation developments. It also demonstrates the potential to further broaden the scope of testing, such as training object detection datasets, as well as exploring the possibilities of using artificial intelligence to expand and predict the rain system control strategies and target rain conditions.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3