Quantifying the Energy Impact of Autonomous Platooning-Imposed Longitudinal Dynamics

Author:

Stegner Evan,Snitzer Philip,Bentley John,Bevly David M.,Hoffman Mark

Abstract

<div class="section abstract"><div class="htmlview paragraph">Platooning has produced significant energy savings for vehicles in a controlled environment. However, the impact of real-world disturbances, such as grade and interactions with passenger vehicles, has not been sufficiently characterized. Follower vehicles in a platoon operate with both different aerodynamic drag and different velocity traces than while driving alone. While aerodynamic drag reduction usually dominates the change in energy consumption for platooning vehicles, the dynamics imposed on the follow vehicle by the lead vehicle and exogenous disturbances impacting the platoon can negate aerodynamic energy savings. In this paper, a methodology is proposed to link the change in longitudinal platooning dynamics with the energy consumption of a platoon follower in real time. This is accomplished by subtracting a predicted acceleration from measured longitudinal acceleration. The real-time consumption calculation methodology is evaluated using data from simulated and experimental platoons. The proposed methodology allows active deceleration losses to be calculated for a platoon follower in real time and is a development of the active deceleration theory presented by the authors in SAE Paper 2022-01-0526. In simulation, energy losses calculated by the method were within 5% of the true value and were robust to errors in modeled aerodynamic drag. As for the experimental results, the method agreed with the prior procedure of SAE Paper 2022-01-0526, which required extensive datasets and could only be completed as a post-processing routine. This novel methodology provides an important new feedback metric for platoon operators, and makes it possible to analyze real-time platooning benefit while the platoon is on the road.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3