Performance of the Machine Learning on Controlling the Pneumatic Suspension of Automobiles on the Rigid and Off-Road Surfaces

Author:

Xu Siping, ,Nguyen Vanliem,Li Shiming,Ni Dengke, , ,

Abstract

To enhance the ride comfort and control performance of the semi-active pneumatic suspension system (PSS) of automobiles on the different road surfaces, a machine learning method (MLM) developed on the optimal control rules of the fuzzy logic control is proposed for the semi-active PSS. A nonlinear dynamic model of the automobile with eight degrees of freedom (DOF) is established to compute the results. The root mean square (RMS) accelerations of the vertical driver’s seat and the pitching angle and rolling angle of the automobile are selected to evaluate the ride comfort of the automobile on the rigid road and off-road terrain surfaces. The research results show that the off-road terrain surfaces remarkably affect the ride comfort of the automobile, especially at a high moving speed range of the automobile over 17.5 m/s. The performance of the MLM in improving the ride comfort of the automobile is better than the fuzzy logic control under various simulation conditions. Particularly, the RMS accelerations of the vertical driver’s seat and the pitching angle and rolling angle of the automobile with the MLM are smaller than that of the fuzzy logic control by 14.6%, 9.6%, and 5.3% on the rigid road surfaces and reduced by 14.9%, 8.7%, and 9.8% on the soil terrain of off-road terrain surfaces, respectively. However, the research results also indicate that the performance of the MLM significantly depends on the data map of the learning process. Thus, to further enhance the performance of the MLM, the data map for the machine learning process should be expanded under different operating conditions of the automobile.

Publisher

SAE International

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractional-Order PIλDμ Control to Enhance the Driving Smoothness of Active Vehicle Suspension in Electric Vehicles;World Electric Vehicle Journal;2024-04-26

2. Research on the Control Strategy of Electric Vehicle Active Suspension Based on Fuzzy Theory;SAE Technical Paper Series;2024-04-09

3. Assessing the Efficiency of the Air Isolation System Based on the Mathematical Models;The International Journal of Acoustics and Vibration;2024-03-29

4. Analyzing isolation capacity of new seat suspension resorting TPS and NSS combined;International Journal of Dynamics and Control;2024-01-23

5. Development of a new seat isolation system for ameliorating the driver’s ride quality;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3