Affiliation:
1. Vellore Institute of Technology
Abstract
<div class="section abstract"><div class="htmlview paragraph">Heat transfer optimization is a crucial aspect of the design process for Formula Student race cars, particularly for the radiator, usually housed in a side pod. For the car to operate at peak performance, a well-designed radiator-sidepod system is essential such that it can dissipate heat generated by the engine faster, for the car to run in optimal performance. Testing the car physically for various radiator-sidepod design iterations is a very difficult task, also considering the costs to manufacture the radiator-sidepod setup. The objective of this study is to develop a comprehensive methodology for analysing heat transfer through radiator setup using Computational Fluid Dynamics and to validate it through experimental investigations, to enhance performance and efficiency of the radiator setup. It further explains how to find out its heat transfer efficiency, and to choose the right radiator-sidepod setup, giving optimal performance. The flow of coolant inside the radiator, as well as external air flow through sidepod, is considered for realistic results in numerical analysis. Various radiator dimensions and sidepod designs are considered in the scope of this paper. The heat transfer simulation is performed in ANSYS Fluent, and their results compared. The final radiator-sidepod setup concluded as optimal setup in this study provided an average temperature drop of 2.9 °C through experiment and 2.72 °C through numerical analysis, providing uniform airflow through the radiator face with less dirty air.</div></div>
Reference16 articles.
1. Bahuguna , R. ,
Prasad , T. ,
Khanna , R. ,
Kumar , A.
et al.
Design and Development of Cooling System for a Formula SAE Race Car SAE Technical Paper 2018-01-0079 2018 https://doi.org/10.4271/2018-01-0079
2. Zubair , M.M. ,
Seraj , M. ,
Faizan , M. ,
Anas , M.
et al.
Experimental Study on Heat Transfer of an Engine Radiator with T i O 2 /EG-Water Nano-Coolant SN Appl. Sci. 3 2021 434 https://doi.org/10.1007/s42452-021-04441-7
3. Farouk , A.A. ,
Amin , A.A. ,
Ali , E.W. ,
Abdullah , A.M.
et al.
Study of the Performance of an FSAE Cooling Radiator Fourteenth International Conference of Fluid Dynamics 2021
4. Padmaraman , S. ,
Mathivanan , N. , and
Ponangi , B.R.
Heat Dissipation Characteristics of a FSAE Racecar Radiator International Journal of Heat and Technology 39 5 2021 1667 1672 https://doi.org/10.18280/ijht.390531
5. David , K. and
Kumar , A.
CFD and Heat Transfer Analysis of Automobile Radiator Using Helical Tubes International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET) 8 5 2019 5988 6017 https://doi.org/10.15680/IJIRSET.2019.0805138