Abstract
AbstractNanofluid as a transport medium displays a great potential in engineering applications involving heat transfer. In this paper, the execution of water and ethylene glycol-based TiO2 nanofluid as a radiator coolant is resolved experimentally. The convective heat transfer coefficient of TiO2/EG-Water nanocoolant has been estimated and contrasted with the information acquired experimentally. Nanocoolant were set up by taking 25% ethylene glycol and 75% water with low volume concentration of TiO2 nanoparticles. All the experiments were led for the distinctive volume flow rates in the range going from 30 to 180 L/h (LPH). The nanocoolant made to flow through curved radiator tubes in every experiment, so that it can exchange heat effectively. Result shows that increasing the volume flow rate of nanocoolant flowing in the radiator tubes, increases the heat transfer as well as the convective heat transfer coefficient of nanocooant. Maximum heat transfer enhancement of 29.5% was recorded for nanocoolant with 0.03% nanoparticle concentration as compared to water at 150 LPH. Apart from this nanoparticle concentration into the base fluid, no further enhancement in heat transfer has been observed at any volume flow rate.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献