Analysis of Cycle-to-Cycle Variation in a Port Injection Gasoline Engine by Simultaneous Measurement of Time Resolved PIV and PLIF

Author:

HARAMIISHI Santa1,WATANABE Takahiro1,IIDA Minoru1,HOKIMOTO Satoshi2,KUBOYAMA Tatsuya3,MORIYOSHI Yasuo3

Affiliation:

1. Yamaha Motor Co., Ltd.

2. Sustainable Engine Research Center Co., Ltd.

3. Chiba University

Abstract

<div class="section abstract"><div class="htmlview paragraph">Cycle-to-cycle variation (CCV) of combustion in low load operation is a factor that may cause various problems in engine operation. Variable valve timing and variable ignition timing are commonly used as a means to reduce this variation. However, due to mountability and cost constraints, these methods are not feasible for use in motorcycle engines. Therefore, development of an engine with minimal CCV without utilizing complicated mechanisms or electronic control is required. CCV of combustion may be caused by fluctuations in in-cylinder flow, air-fuel mixture, temperature, residual gas and ignition energy. In this study, the relationship between CCV of combustion, in-cylinder flow fluctuation and air-fuel mixture fluctuation was the primary focus. In order to evaluate in-cylinder flow fluctuation, Time Resolved Particle Image Velocimetry (TR-PIV) technique was utilized. In addition, Planar Laser Induced Fluorescence (PLIF) technique was used to measure spatial distribution of the mixture. These two visualization techniques were used together to measure continuous combustion cycles. The fluctuation of net IMEP can be explained by the fluctuation of Turbulence Kinetic Energy (TKE) and fuel concentration. In most cycles, net IMEP was correlated with TKE. In the remaining cycles, net IMEP was correlated with fuel concentration. The contribution of each factor towards net IMEP is to be discussed. It has been also confirmed that TKE fluctuation is caused by fluctuation in the tumble vortex structure, as shown in the authors' previous study [<span class="xref">2</span>] [<span class="xref">13</span>].</div></div>

Publisher

Society of Automotive Engineers of Japan

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixture Distribution in Spark Ignited Port Fuel Injection Engines: A Review;Journal of Engineering for Gas Turbines and Power;2023-02-27

2. ANALYSIS OF IN-CYLINDER FLOW FIELDS USING PROPER ORTHOGONAL DECOMPOSITION-BASED QUADRUPLE DECOMPOSITION;Journal of Flow Visualization and Image Processing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3