Machine Learning Approach for Open Circuit Fault Detection and Localization in EV Motor Drive Systems

Author:

Arsalan Ali1,Papari Behnaz1,Rahman S M Imrat1,Timilsina Laxman1,Moghassemi Ali1,Muriithi Grace1,Ozkan Gokhan1,Edrington Christopher1,Buraimoh Elutunji1

Affiliation:

1. Clemson University

Abstract

<div class="section abstract"><div class="htmlview paragraph">Semiconductor devices in electric vehicle (EV) motor drive systems are considered the most fragile components with a high occurrence rate for open circuit fault (OCF). Various signal-based and model-based methods with explicit mathematical models have been previously published for OCF diagnosis. However, this proposed work presents a model-free machine learning (ML) approach for a single-switch OCF detection and localization (DaL) for a two-level, three-phase inverter. Compared to already available ML models with complex feature extraction methods in the literature, a new and simple way to extract OCF feature data with sufficient classification accuracy is proposed. In this regard, the inherent property of active thermal management (ATM) based model predictive control (MPC) to quantify the conduction losses for each semiconductor device in a power converter is integrated with an ML network. This recurrent neural network (RNN)-based ML model as a multiclass classifier localizes the faulty switch based on the dynamics associated with conduction losses as reliable and feature-rich data. The presented approach utilizes the controller data with no additional computational load to compute the feed-in data for the ML model and no extra hardware requirements. The proposed data-driven approach, with an accuracy of 99% for distinct hyperparameters and testing datasets, proves to be a promising solution for OCF DaL.</div></div>

Publisher

SAE International

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3