Energy-Efficient and Context-Aware Computing in Software-Defined Vehicles for Advanced Driver Assistance Systems (ADAS)

Author:

Kothari Aadi1,Talty Timothy1,Huxtable Scott1,Zeng Haibo1

Affiliation:

1. Virginia Tech

Abstract

<div class="section abstract"><div class="htmlview paragraph">The rise of Software-Defined Vehicles (SDV) has rapidly advanced the development of Advanced Driver Assistance Systems (ADAS), Autonomous Vehicle (AV), and Battery Electric Vehicle (BEV) technology. While AVs need power to compute data from perception to controls, BEVs need the efficiency to optimize their electric driving range and stand out compared to traditional Internal Combustion Engine (ICE) vehicles. AVs possess certain shortcomings in the current world, but SAE Level 2+ (L2+) Automated Vehicles are the focus of all major Original Equipment Manufacturers (OEMs). The most common form of an SDV today is the amalgamation of AV and BEV technology on the same platform which is prominently available in most OEM’s lineups. As the compute and sensing architectures for L2+ automated vehicles lean towards a computationally expensive centralized design, it may hamper the most important purchasing factor of a BEV, the electric driving range.</div><div class="htmlview paragraph">This research asserts that the development of dynamic sensing and context-aware algorithms will allow a BEV to retain energy efficiency and the ADAS to maintain performance. Moreover, a decentralized computing architecture design will allow the system to utilize System-on-Module (SoM) boards that can process Artificial Intelligence (AI) algorithms at the edge. This will enable refined hardware acceleration using Edge-AI. The research will propose the use of a novel Software-in-the-Loop (SiL) simulation environment for a 2023 Cadillac LYRIQ provided by the EcoCAR EV Challenge competition. Future work will involve an in-depth evaluation and discussion of the simulation data. We will conclude that optimizing sensing and computation in an SDV platform will allow Automated and Electric Vehicles to prosper concurrently without impeding their technological progress.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3