Development of an Energy Efficient and Cost Effective Autonomous Vehicle Research Platform

Author:

Brown Nicholas E.,Rojas Johan F.,Goberville Nicholas A.,Alzubi HamzehORCID,AlRousan Qusay,Wang Chieh (Ross)ORCID,Huff Shean,Rios-Torres Jackeline,Ekti Ali Riza,LaClair Tim J.,Meyer Richard,Asher Zachary D.ORCID

Abstract

Commercialization of autonomous vehicle technology is a major goal of the automotive industry, thus research in this space is rapidly expanding across the world. However, despite this high level of research activity, literature detailing a straightforward and cost-effective approach to the development of an AV research platform is sparse. To address this need, we present the methodology and results regarding the AV instrumentation and controls of a 2019 Kia Niro which was developed for a local AV pilot program. This platform includes a drive-by-wire actuation kit, Aptiv electronically scanning radar, stereo camera, MobilEye computer vision system, LiDAR, inertial measurement unit, two global positioning system receivers to provide heading information, and an in-vehicle computer for driving environment perception and path planning. Robotic Operating System software is used as the system middleware between the instruments and the autonomous application algorithms. After selection, installation, and integration of these components, our results show successful utilization of all sensors, drive-by-wire functionality, a total additional power* consumption of 242.8 Watts (*Typical), and an overall cost of $118,189 USD, which is a significant saving compared to other commercially available systems with similar functionality. This vehicle continues to serve as our primary AV research and development platform.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference101 articles.

1. Autonomous ships on the high seas

2. VITS-a vision system for autonomous land vehicle navigation

3. A MAV that flies like an airplane and hovers like a helicopter;Green;Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2005

4. Autonomous Satellite Navigation System;Devereux;U.S. Patent,2003

5. Challenges in Autonomous Vehicle Testing and Validation

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3