Computational Assessment of Ammonia as a Fuel for Light-Duty SI Engines

Author:

Silva Mickael1,Almatrafi Fahad1,Uddeen Kalim1,Cenker Emre2,Sim Jaeheon2,Younes Mourad2,Jamal Aqil2,Guiberti Thibault1,Turner James1,Im Hong1

Affiliation:

1. King Abdullah University of Science & Technology

2. Saudi Aramco

Abstract

<div class="section abstract"><div class="htmlview paragraph">To understand key practical aspects of ammonia as a fuel for internal combustion engines, three-dimensional computational fluid dynamics (CFD) simulations were performed using CONVERGE<sup>TM</sup>. A light-duty single-cylinder research engine with a geometrical compression ratio of 11.5 and a conventional pentroof combustion chamber was experimentally operated at stoichiometry. The fumigated ammonia was introduced at the intake plenum. Upon model validation, additional sensitivity analysis was performed. The combustion was modeled using a detailed chemistry solver (SAGE), and the ammonia oxidation was computed from a 38-specie and 262-reaction chemical reaction mechanism. Three different piston shapes were assessed, and it was found that the near-spark flow field associated with the piston design in combination with the tumble motion promotes faster combustion and yields enhanced engine performance. The simulation results suggest that operating an engine with ammonia requires substantial spark advancement because its combustion duration is significantly longer relative to conventional hydrocarbon fuels as a result of its low laminar burning velocity. Tradeoffs between combustion efficiency and NOx, and thermal and combustion efficiencies were observed. Moreover, as the engine speed was increased, further spark advancement was needed as the physical time for combustion development is shorter. Ultimately, it was demonstrated that simultaneous optimization of operating conditions and piston design can provide appreciable gains in combustion and thermal efficiencies.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3