Experimental Comparison of Spark and Jet Ignition Engine Operation with Ammonia/Hydrogen Co-Fuelling

Author:

Ambalakatte Ajith1,Cairns Alasdair1,Geng Sikai1,Varaei Amirata1,Hegab Abdelrahman1,Harrington Anthony2,Hall Jonathan2,Bassett Michael2

Affiliation:

1. University of Nottingham

2. Mahle Powertrain Ltd.

Abstract

<div class="section abstract"><div class="htmlview paragraph">Ammonia (NH<sub>3</sub>) is emerging as a potential fuel for longer range decarbonised heavy transport, predominantly due to favourable characteristics as an effective hydrogen carrier. This is despite generally unfavourable combustion and toxicity attributes, restricting end use to applications where robust health and safety protocols can always be upheld. In the currently reported work, a spark ignited thermodynamic single cylinder research engine was upgraded to include gaseous ammonia and hydrogen port injection fueling, with the aim of understanding maximum viable ammonia substitution ratios across the speed-load operating map. The work was conducted under stoichiometric conditions with the spark timing re-optimised for maximum brake torque at all stable logged sites. The experiments included industry standard measurements of combustion, performance and engine-out emissions. It was found possible to run the engine on pure ammonia at low engine speeds at low to moderate engine loads in a fully warmed up state. When progressively dropping down below this threshold load limit, an increasing amount of hydrogen co-fueling was required to avoid unstable combustion. All metrics of combustion, efficiency and emissions tend to improve when moving upwards from the threshold load line. A maximum net indicated efficiency of 40% was achieved at 1800rpm 16bar IMEPn, with efficiency tending to increase with speed and load. Furthermore, comparing spark ignition with active and passive jet ignition (with the former involving direct injection of hydrogen into the pre-chamber only and the main chamber port fueled with ammonia), at different loads it was found that active systems can significantly improve early burn phase and reduce engine-out NOx compared to passive jet ignition and SI. While both Jet ignition systems required supplementary hydrogen, it accounted for ~1% (active) of the total fuel energy at high loads increasing with reduction in engine load.</div></div>

Publisher

SAE International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3