Application of a New-Concept Gasoline Pump Injector (GPI) on a Motorcycle Engine

Author:

Balasubramanian N.1,Keerthi G. R.2,Nithin J. T.2,Jayabalan S.3,Anand T. N. C.2

Affiliation:

1. Stanadyne India Private Limited. Indian Institute of Technol

2. Indian Institute of Technology.

3. Stanadyne India Private Limited.

Abstract

<div class="section abstract"><div class="htmlview paragraph">This paper presents the results of tests using a prototype pump-integrated port fuel injector that is designed for small gasoline engines. The unique construction of the injector eliminates the need for a separate feed pump. The device is intended as a solution to meet the upcoming emission norms similar to Euro 6 standards, to be implemented in Asian countries. In particular, the Indian two-wheeler market which produces around 20 million vehicles annually [<span class="xref">1</span>], migrates to Bharat Stage VI (BS VI) emission standards in the year 2020. This market is largely cost-driven and currently most of the motorcycles use carburettors as fuelling systems. It is expected that the adoption of port fuel injection would be inevitable to meet the BS VI emission norms. To minimize the increase in cost due to such a change, a new injector is developed, which integrates the fuel pump within the injector, making the system simple and compact, while calling for no change in the fuel tank. Usage of a solenoid actuator in the injector design, enables closed-loop fuel quantity control. In the injector, fuel is pressurized in a pumping chamber, and the pressurized fuel is then injected through orifices to produce a spray in the intake port of the engine. This injector was tested on a 200 cc motorcycle engine, using a steady state dynamometer. The performance and emission results were encouraging and the same are reported in this paper.</div></div>

Publisher

Society of Automotive Engineers of Japan

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3