A New Optimal Design of Stable Feedback Control of Two-Wheel System Based on Reinforcement Learning

Author:

Yu Zhenghong1,Zhu Xuebin1

Affiliation:

1. Guangdong Polytechnic of Science and Technology, College of Robotics, China

Abstract

<div>The two-wheel system design is widely used in various mobile tools, such as remote-control vehicles and robots, due to its simplicity and stability. However, the specific wheel and body models in the real world can be complex, and the control accuracy of existing algorithms may not meet practical requirements. To address this issue, we propose a double inverted pendulum on mobile device (DIPM) model to improve control performances and reduce calculations. The model is based on the kinetic and potential energy of the DIPM system, known as the Euler-Lagrange equation, and is composed of three second-order nonlinear differential equations derived by specifying Lagrange. We also propose a stable feedback control method for mobile device drive systems. Our experiments compare several mainstream reinforcement learning (RL) methods, including linear quadratic regulator (LQR) and iterative linear quadratic regulator (ILQR), as well as Q-learning, SARSA, DQN (Deep Q Network), and AC. The simulation results demonstrate that the DQN and AC methods are superior to ILQR in our designed nonlinear system. In all aspects of the test, the performance of Q-learning and SARSA is comparable to that of ILQR, with some slight improvements. However, ILQR shows its advantages at 10 deg and 20 deg. In the small deflection (between 5 and 10 deg), the DQN and AC methods perform 2% better than the traditional ILQR, and in the large deflection (10–30 deg), the DQN and AC methods perform 15% better than the traditional ILQR. Overall, RL not only has the advantages of strong versatility, wide application range, and parameter customization but also greatly reduces the difficulty of control system design and human investment, making it a promising field for future research.</div>

Publisher

SAE International

Subject

Management, Monitoring, Policy and Law,Engineering (miscellaneous),Aerospace Engineering,Transportation,Automotive Engineering,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3