Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor β through the phosphatidylinositol 3-kinase pathway

Author:

Moeller Lars C.1,Cao Xia2,Dumitrescu Alexandra M.1,Seo Hisao2,Refetoff Samuel134

Affiliation:

1. Department of Medicine, The University of Chicago, Chicago, IL, USA

2. Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan

3. Department of Pediatrics, The University of Chicago, Chicago, IL, USA

4. Committees on Genetics and Molecular Medicine, The University of Chicago, Chicago, IL, USA

Abstract

Thyroid hormone (TH) action is mediated principally through binding of the hormone ligand, 3,3,5-triiodothyronine (T3), to TH receptors (TRs). This hormone-receptor interaction recruits other proteins to form complexes that regulate gene expression by binding to DNA sequences in the promoter of target genes. We recently described an extranuclear mechanism of TH action that consists of the association of TH-liganded TRβ with p85α [regulatory subunit of phosphatidylinositol 3-kinase (PI3K)] in the cytosol and subsequent activation of the PI3K, generating phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3]. This initiates the activation of a signaling cascade by phosphorylation of Akt, mammalian target of rapamycin (mTOR) and its substrate p70S6K, leading to the stimulation of ZAKI-4α synthesis, a calcineurin inhibitor. Furthermore, we found that this same mechanism leads to induction of the transcription factor hypoxia-inducible factor (HIF-1α), and its target genes, glucose transporter (GLUT)1, platelet-type phosphofructokinase (PFKP), and monocarboxylate transporter (MCT) 4. These genes are of special interest, because their products have important roles in cellular glucose metabolism, from glucose uptake (GLUT1) to glycolysis (PFKP) and lactate export (MCT4). These results demonstrate that the TH-TRβ complex can exert a non-genomic action in the cytosol leading to changes in gene expression by direct (HIF-1α) and indirect (ZAKI-4α, GLUT1, PFKP) means.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3