Novel human ZAKI-4 isoforms: hormonal and tissue-specific regulation and function as calcineurin inhibitors

Author:

CAO Xia1,KAMBE Fukushi1,MIYAZAKI Takashi1,SARKAR Devanand1,OHMORI Sachiko1,SEO Hisao1

Affiliation:

1. Department of Endocrinology and Metabolism, Division of Molecular and Cellular Adaptation, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan

Abstract

We identified a thyroid hormone [3,5,3′-tri-iodothyronine (T3)]-responsive gene, ZAKI-4, in cultured human skin fibroblasts. It belongs to a family of genes that encode proteins containing a conserved motif. The motif binds to calcineurin and inhibits its phosphatase activity. In the present study, we have demonstrated three different ZAKI-4 transcripts, α, β1 and β2, in human brain by 5′- and 3′-RACE (rapid amplification of cDNA ends). The α transcript was identical with the one that we originally cloned from human fibroblasts and the other two are novel. The three transcripts are generated by alternative initiation and splicing from a single gene on the short arm of chromosome 6. It is predicted that β1 and β2 encode an identical protein product, β, which differs from α in its N-terminus. Since α and β contain an identical C-terminal region harbouring the conserved motif, both isoforms are suggested to inhibit calcineurin activity. Indeed, each isoform associates with calcineurin A and inhibits its activity in a similar manner, suggesting that the difference in N-terminus of each isoform does not affect the inhibitory function on calcineurin. An examination of the expression profile of the three transcripts in 12 human tissues revealed that the α transcript is expressed exclusively in the brain, whereas β transcripts are expressed ubiquitously, most abundantly in brain, heart, skeletal muscle and kidney. It was also demonstrated that human skin fibroblasts express both α and β transcripts, raising the question of which transcript is up-regulated by T3. It was revealed that T3 markedly induced the expression of α isoform but not of β. This T3-mediated increase in the α isoform was associated with a significant decrease in endogenous calcineurin activity. These results suggest that the expression of ZAKI-4 isoforms is subjected to distinct hormonal as well as tissue-specific regulation, constituting a complex signalling network through inhibition of calcineurin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3