mTORC2 Inhibition Improves Morphological Effects of PTEN Loss, But Does Not Correct Synaptic Dysfunction or Prevent Seizures

Author:

Cullen Erin R.ORCID,Tariq KamranORCID,Shore Amy N.,Luikart Bryan W.ORCID,Weston Matthew C.ORCID

Abstract

Hyperactivation of PI3K/PTEN-mTOR signaling during neural development is associated with focal cortical dysplasia (FCD), autism, and epilepsy. mTOR can signal through two major hubs, mTORC1 and mTORC2, both of which are hyperactive following PTEN loss of function (LOF). Here, we tested the hypothesis that genetic inactivation of the mTORC2 complex via deletion ofRictoris sufficient to rescue morphologic and electrophysiological abnormalities in the dentate gyrus caused by PTEN loss, as well as generalized seizures. An established, early postnatal mouse model of PTEN loss in male and female mice showed spontaneous seizures that were not prevented by mTORC2 inactivation. This lack of rescue occurred despite the normalization or amelioration of many morphologic and electrophysiological phenotypes. However, increased excitatory connectivity proximal to dentate gyrus granule neuron somas was not normalized by mTORC2 inactivation. Further studies demonstrated that, although mTORC2 inactivation largely rescued the dendritic arbor overgrowth caused by PTEN LOF, it increased synaptic strength and caused additional impairments of presynaptic function. These results suggest that a constrained increase in excitatory connectivity and co-occurring synaptic dysfunction is sufficient to generate seizures downstream of PTEN LOF, even in the absence of characteristic changes in morphologic properties.SIGNIFICANCE STATEMENTHomozygous deletion of thePtengene in neuronal subpopulations in the mouse serves as a valuable model of epilepsy caused by mTOR hyperactivation. To better understand the physiological mechanisms downstream ofPtenloss that cause epilepsy, as well as the therapeutic potential of targeted gene therapies, we tested whether genetic inactivation of the mTORC2 complex could improve the cellular, synaptic, andin vivoeffects ofPtenloss in the dentate gyrus. We found that mTORC2 inhibition improved or rescued all morphologic effects ofPtenloss in the dentate gyrus, but synaptic changes and seizures persisted. These data suggest that synaptic dysfunction can drive epilepsy caused by hyperactivation of PI3K/PTEN-mTOR, and that future therapies should focus on this mechanistic link.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Autism Speaks

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3