Activity of the Substantia Nigra Pars Reticulata during Saccade Adaptation

Author:

Kojima YoshikoORCID,Koketsu Daisuke,May Paul J.

Abstract

AbstractWhen movements become inaccurate, the resultant error induces motor adaptation to improve accuracy. This error-based motor learning is regarded as a cerebellar function. However, the influence of the other brain areas on adaptation is poorly understood. During saccade adaptation, a type of error-based motor learning, the superior colliculus (SC) sends a postsaccadic error signal to the cerebellum to drive adaptation. Since the SC is directly inhibited by the substantia nigra pars reticulata (SNr), we hypothesized that the SNr might influence saccade adaptation by affecting the SC error signal. In fact, previous studies indicated that the SNr encodes motivation and motivation influences saccade adaptation. In this study, we first established that the SNr projects to the rostral SC, where small error signals are generated, in nonhuman primates. Then, we examined SNr activity while the animal underwent adaptation. SNr neurons paused their activity in association with the error. This pause was shallower and delayed compared with those of no-error trial saccades. The pause at the end of the adaptation was shallower and delayed compared with that at the beginning of the adaptation. The change in the intertrial interval, an indicator of motivation, and adaptation speed had a positive correlation with the changes in the error-related pause. These results suggest that (1) the SNr exhibits a unique activity pattern during the error interval; (2) SNr activity increases during adaptation, consistent with the decrease in SC activity; and (3) motivational decay during the adaptation session might increase SNr activity and influence the adaptation speed.

Funder

HHS | NIH | National Eye Institute

HHS | NIH | NIH Office of the Director

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3