Context-Dependent Effects of Substantia Nigra Stimulation on Eye Movements

Author:

Basso Michele A.,Liu Ping

Abstract

In a series of now classic experiments, an output structure of the basal ganglia (BG)—the substantia nigra pars reticulata (SNr)—was shown to be involved in the generation of saccades made in particular behavioral contexts, such as when memory was required for guidance. Recent electrophysiological experiments, however, call this original hypothesis into question. Here we test the hypothesis that the SNr is involved preferentially in nonvisually guided saccades using electrical stimulation. Monkeys performed visually guided and memory-guided saccades to locations throughout the visual field. On 50% of the trials, electrical stimulation of the SNr occurred. Stimulation of the SNr altered the direction, amplitude, latency, and probability of saccades. Visually guided saccades tended to be rotated toward the field contralateral to the side of stimulation, whereas memory-guided saccades tended to be rotated toward the hemifield ipsilateral to the side of stimulation. Overall, the changes in saccade vector direction were larger for memory-guided than for visually guided saccades. Both memory- and visually guided saccades were hypometric during stimulation trials, but the stimulation preferentially affected the length of memory-guided saccades. Electrical stimulation of the SNr produced decreases in visually guided saccades bilaterally. In contrast, memory-guided saccades often had increases in saccade latency bilaterally. Finally, we found approximately 10% reduction in the probability of memory-guided saccades bilaterally. Visually guided saccade probability was unaltered. Taken together the results are consistent with the hypothesis that SNr primarily influences nonvisually guided saccades. The pattern of stimulation effects suggests that SNr influence is widespread, altering the pattern of activity bilaterally across the superior colliculus map of saccades.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3