Sensory Perturbations from Hindlimb Cutaneous Afferents Generate Coordinated Functional Responses in All Four Limbs during Locomotion in Intact Cats

Author:

Merlet Angèle N.,Jéhannin Pierre,Mari Stephen,Lecomte Charly G.,Audet Johannie,Harnie Jonathan,Rybak Ilya A.ORCID,Prilutsky Boris I.,Frigon AlainORCID

Abstract

AbstractCoordinating the four limbs is an important feature of terrestrial mammalian locomotion. When the foot dorsum contacts an obstacle, cutaneous mechanoreceptors send afferent signals to the spinal cord to elicit coordinated reflex responses in the four limbs to ensure dynamic balance and forward progression. To determine how the locomotor pattern of all four limbs changes in response to a sensory perturbation evoked by activating cutaneous afferents from one hindlimb, we electrically stimulated the superficial peroneal (SP) nerve with a relatively long train at four different phases (mid-stance, stance-to-swing transition, mid-swing, and swing-to-stance transition) of the hindlimb cycle in seven adult cats. The largest functional effects of the stimulation were found at mid-swing and at the stance-to-swing transition with several changes in the ipsilateral hindlimb, such as increased activity in muscles that flex the knee and hip joints, increased joint flexion and toe height, increased stride/step lengths and increased swing duration. We also observed several changes in support periods to shift support from the stimulated hindlimb to the other three limbs. The same stimulation applied at mid-stance and the swing-to-stance transition produced more subtle changes in the pattern. We observed no changes in stride and step lengths in the ipsilateral hindlimb with stimulation in these phases. We did observe some slightly greater flexions at the knee and ankle joints with stimulation at mid-stance and a reduction in double support periods and increase in triple support. Our results show that correcting or preventing stumbling involves functional contributions from all four limbs.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

HHS | National Institutes of Health

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3