Study of Cutaneous Reflex Compensation During Locomotion After Nerve Section in the Cat

Author:

Bernard Geneviève,Bouyer Laurent,Provencher Janyne,Rossignol Serge

Abstract

In the cat, section of all cutaneous nerves of the hindfeet except the tibial (Tib) nerve supplying the plantar surface results in a long-lasting decrease in the intensity of Tib stimulation needed for a threshold response in flexor muscles and an increase in the amplitude of the phase-dependent responses recorded in various muscles during locomotion. Stimulating through chronically implanted nerve cuffs ensured a stable stimulation over time. The increase in reflex amplitude was well above the small increase in the amplitude of the locomotor bursts themselves that results from the denervation. Short latency responses (P1) were seen in flexor muscles, especially at the knee (semitendinosus) and ankle (tibialis anterior and extensor digitorum longus), with stimuli applied in the swing phase and also to a lesser degree in the later part of the cycle. Longer latency responses (P2) were increased in hip, knee, and ankle flexors, as well as in a contralateral extensor (vastus lateralis) when applied in late stance. Responses evoked from stimulating the proximal end of sectioned nerves were not larger than before neurectomy. This suggests that the increased responsiveness to Tib stimulation is not simply caused by an increase in motoneuron excitability, because this would have resulted in a nonspecific increase of responses to stimulation of any nerve. It is concluded that the adult locomotor system is capable of central reorganization to enhance specific remaining cutaneous reflex pathways after a partial cutaneous denervation of the paw.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference53 articles.

1. The distal hindlimb musculature of the cat

2. Phasic gain control of the transmission in cutaneous reflex pathways to motoneurones during ‘fictive’ locomotion

3. Bajrovic F, Remskar M, Sketelj J. Prior collateral sprouting enhances elongation rate of sensory axons regenerating through acellular distal segment of a crushed peripheral nerve. J Peripher Nerv Syst 4: 5–12, 1999.

4. Cutaneous reflexes evoked during human walking are reduced when self-induced

5. Recovery of locomotion after chronic spinalization in the adult cat

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3