Hyperpolarization-Activated Cation Channels Shape the Spiking Frequency Preference of Human Cortical Layer 5 Pyramidal Neurons

Author:

Inibhunu Happy,Moradi Chameh Homeira,Skinner FrancesORCID,Rich ScottORCID,Valiante Taufik A.ORCID

Abstract

AbstractDiscerning the contribution of specific ionic currents to complex neuronal dynamics is a difficult, but important, task. This challenge is exacerbated in the human setting, although the widely characterized uniqueness of the human brain compared with preclinical models necessitates the direct study of human neurons. Neuronal spiking frequency preference is of particular interest given its role in rhythm generation and signal transmission in cortical circuits. Here, we combine the frequency-dependent gain (FDG), a measure of spiking frequency preference, and novelin silicoanalyses to dissect the contributions of individual ionic currents to the suprathreshold features of human layer 5 (L5) neurons captured by the FDG. We confirm that a contemporary model of such a neuron, primarily constrained to capture subthreshold activity driven by the hyperpolarization-activated cyclic nucleotide gated (h-) current, replicates key features of thein vitroFDG both with and without h-current activity. With the model confirmed as a viable approximation of the biophysical features of interest, we applied new analysis techniques to quantify the activity of each modeled ionic current in the moments before spiking, revealing unique dynamics of the h-current. These findings motivated patch-clamp recordings in analogous rodent neurons to characterize their FDG, which confirmed that a biophysically detailed model of these neurons captures key interspecies differences in the FDG. These differences are correlated with distinct contributions of the h-current to neuronal activity. Together, this interdisciplinary and multispecies study provides new insights directly relating the dynamics of the h-current to suprathreshold spiking frequency preference in human L5 neurons.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Krembil Foundation

University of Toronto Department of Physiology

Savoy Foundation

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3