H-current modulation of cortical Up and Down states

Author:

Dalla Porta LeonardoORCID,Barbero-Castillo Almudena,Sanchez-Sanchez José Manuel,Cancino Nathalia,Sanchez-Vives Maria V.ORCID

Abstract

AbstractUnderstanding the link between cellular processes and brain function remains a key challenge in neuroscience. One crucial aspect is the interplay between specific ion channels and network dynamics. This work reveals a role for h-current, a hyperpolarization-activated cationic current, in shaping cortical slow oscillations. Cortical slow oscillations exhibit rhythmic periods of activity (Up states) alternating with silent periods (Down states). By progressively reducing h-current in both cortical slices and in a computational model, we observed Up states transformed into prolonged plateaus of sustained firing, while Down states were also significantly extended. This transformation led to a five-fold reduction in oscillation frequency. In a biophysical recurrent network model, we identified the cellular mechanisms: an increased input resistance and membrane time constant, increasing neuronal responsiveness to even weak inputs. HCN channels, the molecular basis of h-current, are known neuromodulatory targets, suggesting potential pathways for dynamic control of brain rhythms.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3