Inactivation of the Basolateral Amygdala to Insular Cortex Pathway Makes Sign-Tracking Sensitive to Outcome Devaluation

Author:

Keefer Sara E.ORCID,Kochli Daniel E.ORCID,Calu Donna J.

Abstract

AbstractGoal-tracking (GT) rats are sensitive to Pavlovian outcome devaluation while sign-tracking (ST) rats are devaluation insensitive. During outcome devaluation, GT rats flexibly modify responding to cues based on the current value of the associated outcome. However, ST rats rigidly respond to cues regardless of the current outcome value. Prior work demonstrated disconnection of the basolateral amygdala (BLA) and anterior insular cortex (aIC) decreased both GT and ST behaviors. Given the role of these regions in appetitive motivation and behavioral flexibility, we predicted that disrupting BLA to aIC pathway during outcome devaluation would reduce flexibility in GT rats and reduce rigid appetitive motivation in ST rats. We inhibited the BLA to aIC pathway by infusing inhibitory DREADDs (hM4Di-mcherry) or control (mCherry) virus into the BLA and implanted cannulae into the aIC to inhibit BLA terminals using intracranial injections of clozapine N-oxide (CNO). After training, we used a within-subject satiety-induced outcome devaluation procedure in which we sated rats on training pellets (devalued condition) or homecage chow (valued condition). All rats received bilateral CNO infusions into the aIC before brief nonreinforced test sessions. Contrary to our hypothesis, BLA-IC inhibition did not interfere with devaluation sensitivity in GT rats but did make ST behaviors sensitive to devaluation. Intermediate rats showed the opposite effect, showing rigid responding to cues with BLA-aIC pathway inactivation. Together, these results demonstrate BLA-IC projections mediate tracking-specific Pavlovian devaluation sensitivity and highlights the importance of considering individual differences in Pavlovian approach when evaluating circuitry contributions to behavioral flexibility.

Funder

HHS | NIH | National Institute on Drug Abuse

McKnight Foundation

Brain and Behavior Research Foundation

Department of Anatomy and Neurobiology at the University of Maryland, School of Medicine

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3