Excitatory and Inhibitory Signaling in the Nucleus Accumbens Encode Different Aspects of a Pavlovian Cue in Sign Tracking and Goal Tracking Rats

Author:

Duffer Kyle,Gillis Zachary S.,Morrison Sara E.

Abstract

AbstractWhen a Pavlovian cue is presented separately from its associated reward, some animals will acquire a sign tracking (ST) response – approach and/or interaction with the cue – while others will acquire a goal tracking response – approach to the site of reward. We have previously shown that cue-evoked excitations in the nucleus accumbens (NAc) encode the vigor of both behaviors; in contrast, reward-related responses diverge over the course of training, possibly reflecting neurochemical differences between sign tracker and goal tracker individuals. However, a substantial subset of neurons in the NAc exhibit inhibitory, rather than excitatory, cue-evoked responses, and the evolution of their signaling during Pavlovian conditioning remains unknown. Using single-neuron recordings in behaving rats, we show that NAc neurons with cue-evoked inhibitions have distinct coding properties from neurons with cue-evoked excitations. Cue-evoked inhibitions become more numerous over the course of training and, like excitations, may encode the vigor of sign tracking and goal tracking behavior. However, the responses of cue-inhibited neurons do not evolve differently between sign tracker and goal tracker individuals. Moreover, cue-evoked inhibitions, unlike excitations, are insensitive to extinction of the cue-reward relationship. Finally, we show that cue-evoked excitations are greatly diminished by reward devaluation, while inhibitory cue responses are virtually unaffected. Overall, these findings converge with existing evidence that cue-excited neurons in NAc, but not cue-inhibited neurons, are profoundly sensitive to the same behavior variations that are often associated with changes in dopamine release.

Funder

HHS | NIH | National Institute on Drug Abuse

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3