Abstract
Daylight vision is mediated by cone photoreceptors in vertebrates, which synapse with bipolar cells (BCs) and horizontal (HCs) cells. This cone synapse is functionally and anatomically complex, connecting to eight types of depolarizing BCs (DBCs) and five types of hyperpolarizing BCs (HBCs) in mice. The dendrites of DBCs and HCs cells make invaginating ribbon synapses with the cone axon terminal, while HBCs form flat synapses with the cone pedicles. The molecular architecture that underpins this organization is relatively poorly understood. To identify new proteins involved in synapse formation and function we used an unbiased proteomic approach and identified LRFN2 (leucine-rich repeat and fibronectin III domain-containing 2) as a component of the DBC signaling complex. LRFN2 is selectively expressed at cone terminals and colocalizes with PNA, and other DBC signalplex members. In LRFN2 deficient mice, the synaptic markers: LRIT3, ELFN2, mGluR6, TRPM1 and GPR179 are properly localized. Similarly, LRFN2 expression and localization is not dependent on these synaptic proteins. In the absence of LRFN2 the cone-mediated photopic electroretinogram b-wave amplitude is reduced at the brightest flash intensities. These data demonstrate that LRFN2 absence compromises normal synaptic transmission between cones and cone DBCs.
Funder
HHS | NIH | National Eye Institute