Neural Encoding of Active Multi-Sensing Enhances Perceptual Decision-Making via a Synergistic Cross-Modal Interaction

Author:

Delis Ioannis,Ince Robin A.A.ORCID,Sajda PaulORCID,Wang Qi

Abstract

Most perceptual decisions rely on the active acquisition of evidence from the environment involving stimulation from multiple senses. However, our understanding of the neural mechanisms underlying this process is limited. Crucially, it remains elusive how different sensory representations interact in the formation of perceptual decisions. To answer these questions, we used an active sensing paradigm coupled with neuroimaging, multivariate analysis, and computational modeling to probe how the human brain processes multisensory information to make perceptual judgments. Participants of both sexes actively sensed to discriminate two texture stimuli using visual (V) or haptic (H) information or the two sensory cues together (VH). Crucially, information acquisition was under the participants' control, who could choose where to sample information from and for how long on each trial. To understand the neural underpinnings of this process, we first characterized where and when active sensory experience (movement patterns) is encoded in human brain activity (EEG) in the three sensory conditions. Then, to offer a neurocomputational account of active multisensory decision formation, we used these neural representations of active sensing to inform a drift diffusion model of decision-making behavior. This revealed a multisensory enhancement of the neural representation of active sensing, which led to faster and more accurate multisensory decisions. We then dissected the interactions between the V, H, and VH representations using a novel information-theoretic methodology. Ultimately, we identified a synergistic neural interaction between the two unisensory (V, H) representations over contralateral somatosensory and motor locations that predicted multisensory (VH) decision-making performance.SIGNIFICANCE STATEMENTIn real-world settings, perceptual decisions are made during active behaviors, such as crossing the road on a rainy night, and include information from different senses (e.g., car lights, slippery ground). Critically, it remains largely unknown how sensory evidence is combined and translated into perceptual decisions in such active scenarios. Here we address this knowledge gap. First, we show that the simultaneous exploration of information across senses (multi-sensing) enhances the neural encoding of active sensing movements. Second, the neural representation of active sensing modulates the evidence available for decision; and importantly, multi-sensing yields faster evidence accumulation. Finally, we identify a cross-modal interaction in the human brain that correlates with multisensory performance, constituting a putative neural mechanism for forging active multisensory perception.

Funder

European Commission

Physiological Society

Foundation for the National Institutes of Health

U.S. Army Research Laboratory

Wellcome Trust

Economic and Social Research Council

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3