Thalamocortical mGlu8 Modulates Dorsal Thalamus Excitatory Transmission and Sensorimotor Activity

Author:

Nabit Bretton P.ORCID,Taylor Anne,Winder Danny G.

Abstract

Metabotropic glutamate receptor 8 (mGlu8) is a heterogeneously expressed and poorly understood glutamate receptor with potential pharmacological significance. The thalamic reticular nucleus (TRN) is a critical inhibitory modulator of the thalamocortical–corticothalamic (TC–CT) network and plays a crucial role in information processing throughout the brain, is implicated in a variety of psychiatric conditions, and is also a site of significant mGlu8 expression. Using both male and female mice, we determined via fluorescent in situ hybridization that parvalbumin-expressing cells in the TRN core and shell matrices (identified byspp1+andecel1+expression, respectively), as well as the cortical layers involved in CT signaling, expressgrm8mRNA. We then assayed the physiological and behavioral impacts of perturbinggrm8signaling in the TC circuit through conditional (adeno-associated virus-CRE mediated) and cell-type-specific constitutive deletion strategies. We show that constitutive parvalbumingrm8knock-out (PVgrm8knock-out) mice exhibited (1) increased spontaneous excitatory drive onto dorsal thalamus relay cells and (2) impaired sensorimotor gating, measured via paired-pulse inhibition, but observed no differences in locomotion and thigmotaxis in repeated bouts of open field test (OFT). Conversely, we observed hyperlocomotive phenotypes and anxiolytic effects of AAV-mediated conditional knockdown ofgrm8in the TRN (TRNgrm8knockdown) in repeated OFT. Our findings underscore a role for mGlu8 in regulating excitatory neurotransmission as well as anxiety-related locomotor behavior and sensorimotor gating, revealing potential therapeutic applications for various neuropsychiatric disorders and guiding future research endeavors into mGlu8 signaling and TRN function.

Funder

HHS | NIH | National Institute on Drug Abuse

Publisher

Society for Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3