Arpa Nikotinamin Sentaz1 (HvNAS1) Genini Yüksek Seviyede İfade Eden Arabidopsis thaliana Bitkileri Demir Eksikliğine Dayanıklılık Gösterir

Author:

Aksoy EmreORCID,Maqbool AmirORCID,Abudureyimu BuasimuhanORCID

Abstract

Iron (Fe) is an important trace mineral for plant development, and plants grown in Fe deficiency experience yield losses due to the leaf chlorosis. In addition to agronomic measures that can be taken to minimize these losses, new plant genotypes can be developed effectively through genetic engineering. While dicots such as Arabidopsis thaliana use a reduction-based strategy to uptake high amounts of iron from the rhizosphere, the chelation strategy has evolved in Gramineous plants including barley (Hordeum vulgare). In this study, barley NICOTIANAMINE SYNTHASE1 (HvNAS1) gene, which is responsible for the production of nicotianamine that can complex with iron, was cloned and expressed at a constitutive high level in Arabidopsis plants. The expression levels of Arabidopsis genes encoding for the proteins involved in iron uptake increased together with HvNAS1 in the T3 Arabidopsis plants. Moreover, the root lengths, root and stem fresh weights, ferric chelate reductase enzyme activities of the plants also increased in the transgenic Arabidopsis plants under Fe deficiency. In addition, significant increases in iron and zinc levels were determined in the roots and shoots of transgenic Arabidopsis plants. As a result, transgenic Arabidopsis plants overexpressing the barley HvNAS1 gene can take up more iron from the rhizosphere and carry this iron to the shoots. This study demonstrates the power of genetic engineering to develop Arabidopsis plants overexpressing the HvNAS1 gene and therefore tolerate iron deficiency.

Publisher

Turkish Science and Technology Publishing (TURSTEP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maize biofortification in the 21st century;Biofortification of Grain and Vegetable Crops;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3