Весовые неравенства для потенциала Данкля–Рисса

Author:

Горбачев Дмитрий Викторович1,Иванов Валерий Иванович1

Affiliation:

1. Тульский государственный университет, г. Тула.

Abstract

Для классического потенциала Рисса или дробного интеграла $$I_{\alpha}$$ хорошо известны условия Харди-Литлвуда-Соболева-Стейна-Вейса $$(L^p, L^q)$$ -ограниченности со степенными весами. С помощью преобразования Фурье $$\mathcal{F}$$ потенциал Рисса определяется равенством $$\mathcal{F}(I_{\alpha}f)(y)=|y|^{-\alpha}\mathcal{F}(f)(y)$$. Важным обобщением преобразования Фурье стало преобразование Данкля $$\mathcal{F}_k$$, действующее в лебеговых пространствах с весом Данкля, определяемым с помощью системы корней $$R\subset\mathbb{R}^d$$, ее группы отражений G и неотрицательной функции кратности k на R, инвариантной относительно G. С. Тангавелу и Ю. Шу с помощью равенства $$\mathcal{F}_k(I_{\alpha}f)(y)=|y|^{-\alpha}\mathcal{F}_k(f)(y)$$ определили D-потенциал Рисса. Для D-потенциала Рисса также были доказаны условия ограниченности в лебеговых пространствах с весом Данкля и степенными весами, аналогичные условиям для потенциала Рисса. На конференции "Follow-up Approximation Theory and Function Spaces" в Centre de Recerca Matem`atica (CRM, Barcelona, 2017)  М.Л. Гольдман поставил вопрос об условиях $$(L_p,L_q)$$-ограниченности D-потенциала Рисса с кусочно-степенными весами. Рассмотрение кусочно-степенных весов позволяет выявить влияние на ограниченность D-потенциала Рисса поведения весов в нуле и бесконечности. В настоящей работе на этот вопрос дается полный ответ. В частности,в случае потенциала Рисса получены необходимые и достаточные условия. В качестве вспомогательных результатов доказаны необходимые и достаточные условия ограниченности операторов Харди и Беллмана в лебеговых пространствах с весом Данкля и кусочно-степенными весами.

Publisher

FSBEIHE Tula State Lev Tolstoy Pedagogical University

Subject

General Mathematics

Reference23 articles.

1. Frostman O., 1935, “Potentiel d’equilibre et capacite des ensembles avec quelques applications a la theorie des fonctions”, These, Communic. Semin. Math. de l’Univ. de Lund., vol. 3.

2. Riesz M., 1949, “L’integrale de Riemann-Liouville et le probleme de Cauchy”, Acta Math., vol.81, № 1, pp. 1–222.

3. Hardy G.H., Littelwood J.E., 1928, “Some properties of fractional integrals, I”, Math. Zeit., vol. 27, pp. 565–606.

4. Soboleff S., 1963, “Sur un th´ eor´ eme d’analyse fonctionnelle”, Amer. Math. Soc. Transl., № 2(34), pp. 39–68.

5. Stein E.M., Weiss G., 1958, “Fractional integrals on n-dimensional Euclidean space”, J. Math. Mech., vol. 7, № 4, pp. 503–514.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3