A Loaded Analysis Method for RV Cycloidal-pin Transmission Based on the Minimum Energy Principle

Author:

Li Tianxing1,Xu Hang2,Tian Meng3

Affiliation:

1. Henan University of Science and Technology, School of Mechatronics Engineering, China

2. Zhongyuan University of Technology, School of Mechatronics Engineering, China

3. Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province, China

Abstract

Due to the complexity of load distribution and contact conditions, as well as the lack of effective analysis methods, the theoretically designed rotary vector (RV) cycloidal-pin drive with good meshing characteristics shows poor loaded performance in practical applications. In this paper, an effective analysis method based on the minimum energy principle is proposed, which can accurately obtain the real loaded characteristics in line with the actual operations. In the process of loaded analysis, through the innovative introduction of the minimum energy principle, the actual number of teeth engaged simultaneously was accurately determined, which directly affects the quality of meshing. The results of simulation and measurement experiment demonstrate the correctness and practicability of the theoretical analysis method and the effectiveness of the introduction of the minimum energy principle. This study solves the problem that the actual meshing performance is inconsistent with the theoretical analysis results, and provides an effective way for the improvement and pre-control of the transmission accuracy and meshing quality of the robot RV reducer.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3