Rapid and accurate identification of stem cell differentiation stages via SERS and convolutional neural networks

Author:

Zhang XiaoORCID,Wan Jianhui,Huang Tao,Tang Ping1,Yang Liwei2,Bu Xiaoya2,Zhang Weina,Zhong Liyun

Affiliation:

1. Guangdong University of Technology

2. South China Normal University

Abstract

Monitoring the transition of cell states during induced pluripotent stem cell (iPSC) differentiation is crucial for clinical medicine and basic research. However, both identification category and prediction accuracy need further improvement. Here, we propose a method combining surface-enhanced Raman spectroscopy (SERS) with convolutional neural networks (CNN) to precisely identify and distinguish cell states during stem cell differentiation. First, mitochondria-targeted probes were synthesized by combining AuNRs and mitochondrial localization signal (MLS) peptides to obtain effective and stable SERS spectra signals at various stages of cell differentiation. Then, the SERS spectra served as input datasets, and their distinctive features were learned and distinguished by CNN. As a result, rapid and accurate identification of six different cell states, including the embryoid body (EB) stage, was successfully achieved throughout the stem cell differentiation process with an impressive prediction accuracy of 98.5%. Furthermore, the impact of different spectral feature peaks on the identification results was investigated, which provides a valuable reference for selecting appropriate spectral bands to identify cell states. This is also beneficial for shortening the spectral acquisition region to enhance spectral acquisition speed. These results suggest the potential for SERS-CNN models in quality monitoring of stem cells, advancing the practical applications of stem cells.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Guangdong Introducing Innovative and Entrepreneurial Teams of “The Pearl River Talent Recruitment Program''

Guang-dong Provincial Key Laboratory of Information Photonics Technology

Guangzhou Basic and Applied Basic Research Foundation

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3