3D object detection through fog and occlusion: passive integral imaging vs active (LiDAR) sensing

Author:

Usmani Kashif,O’Connor TimothyORCID,Wani Pranav,Javidi BahramORCID

Abstract

In this paper, we address the problem of object recognition in degraded environments including fog and partial occlusion. Both long wave infrared (LWIR) imaging systems and LiDAR (time of flight) imaging systems using Azure Kinect, which combine conventional visible and lidar sensing information, have been previously demonstrated for object recognition in ideal conditions. However, the object detection performance of Azure Kinect depth imaging systems may decrease significantly in adverse weather conditions such as fog, rain, and snow. The concentration of fog degrades the depth images of Azure Kinect camera, and the overall visibility of RGBD images (fused RGB and depth image), which can make object recognition tasks challenging. LWIR imaging may avoid these issues of lidar-based imaging systems. However, due to poor spatial resolution of LWIR cameras, thermal imaging provides limited textural information within a scene and hence may fail to provide adequate discriminatory information to identify between objects of similar texture, shape and size. To improve the object detection task in fog and occlusion, we use three-dimensional (3D) integral imaging (InIm) system with a visible range camera. 3D InIm provides depth information, mitigates the occlusion and fog in front of the object, and improves the object recognition capabilities. For object recognition, the YOLOv3 neural network is used for each of the tested imaging systems. Since the concentration of fog affects the images from different sensors (visible, LWIR, and Azure Kinect depth cameras) in different ways, we compared the performance of the network on these images in terms of average precision and average miss rate. For the experiments we conducted, the results indicate that in degraded environment 3D InIm using visible range cameras can provide better image reconstruction as compared to the LWIR camera and Azure Kinect RGBD camera, and therefore it may improve the detection accuracy of the network. To the best of our knowledge, this is the first report comparing the performance of object detection between passive integral imaging system vs active (LiDAR) sensing in degraded environments such as fog and partial occlusion.

Funder

Office of Naval Research

Air Force Office of Scientific Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3