Affiliation:
1. Université Paris-Saclay
2. Aix Marseille Univ
Abstract
Large fusion scale laser facilities aim at delivering megajoules laser energy in the UV spectrum and nanosecond regime. Due to the extreme laser energies, the laser damage of final optics of such beamlines is an important issue that must be addressed. Once a damage site initiates, it grows at each laser shot which decreases the quality of the optical component and spoil laser performances. Operation at full energy and power of such laser facilities requires a perfect control of damage kinetics and laser parameters. Monitoring damage kinetics involves onsite observation, understanding of damage growth process and prediction of growth features. Facilities are equipped with cameras dedicated to the monitoring of damage site growth. Here we propose to design and manufacture a dedicated full size optical component to study damage growth at increased energy, on the beamline, i.e. in the real environment of the optics on a large laser facility. Used for the first time in 2021, the growth statistics acquired by this approach at the Laser MegaJoule (LMJ) facility provides a new calibration point at a fluence less than 5 J cm−2 and a flat-in-time pulse of 3 ns.
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献