Deep-learning-enabled high-performance full-field direct detection with dispersion diversity

Author:

Li Xingfeng1,An Shaohua1,Ji Honglin2,Li Jingchi1ORCID,Shieh William2,Su Yikai1ORCID

Affiliation:

1. Shanghai Jiao Tong University

2. The University of Melbourne

Abstract

Data center interconnects require cost-effective photonic integrated optical transceivers to meet the ever-increasing capacity demands. Compared with a coherent transmission system, a complex-valued double-sideband (CV-DSB) direct detection (DD) system can minimize the cost of the photonic circuit, since it replaces two stable narrow-linewidth lasers with only a low-cost un-cooled laser in the transmitter while maintaining a similar spectral efficiency. In the carrier-assisted DD system, the carrier power accounts for a large proportion of the total optical signal power. Reducing the carrier to signal power ratio (CSPR) can improve the information-bearing signal power and thus the achievable system performance. To date, the minimum required CSPR is ∼7 dB for all the reported CV-DSB DD systems having electrical bandwidths of approximately half of baud rates. In this paper, we propose a deep-learning-enabled DD (DLEDD) scheme to recover the full optical field of the transmitted signal at a low CSPR of 2 dB in experiment. Our proposal is based on a dispersion-diversity receiver with an electrical bandwidth of ∼61.0% baud rate and a high tolerance to laser wavelength drift. A deep convolutional neural network enables accurate signal recovery in the presence of a strong signal-signal beat interference. Compared with the conventional method, the proposed DLEDD scheme can reduce the optimum CSPR by ∼8 dB, leading to a significant signal-to-noise ratio improvement of ∼5.8 dB according to simulation results. We experimentally demonstrate the optical field reconstruction for a 28-GBaud 16-ary quadrature amplitude modulation signal after 80-km single-mode fiber transmission based on the proposed DLEDD scheme with a 2-dB optimum CSPR. The results show that the proposed DLEDD scheme could offer a high-performance solution for cost-sensitive applications such as data center interconnects, metro networks, and mobile fronthaul systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3