Affiliation:
1. Shanghai Jiao Tong University
2. The University of Melbourne
Abstract
Data center interconnects require cost-effective photonic integrated optical transceivers to meet the ever-increasing capacity demands. Compared with a coherent transmission system, a complex-valued double-sideband (CV-DSB) direct detection (DD) system can minimize the cost of the photonic circuit, since it replaces two stable narrow-linewidth lasers with only a low-cost un-cooled laser in the transmitter while maintaining a similar spectral efficiency. In the carrier-assisted DD system, the carrier power accounts for a large proportion of the total optical signal power. Reducing the carrier to signal power ratio (CSPR) can improve the information-bearing signal power and thus the achievable system performance. To date, the minimum required CSPR is ∼7 dB for all the reported CV-DSB DD systems having electrical bandwidths of approximately half of baud rates. In this paper, we propose a deep-learning-enabled DD (DLEDD) scheme to recover the full optical field of the transmitted signal at a low CSPR of 2 dB in experiment. Our proposal is based on a dispersion-diversity receiver with an electrical bandwidth of ∼61.0% baud rate and a high tolerance to laser wavelength drift. A deep convolutional neural network enables accurate signal recovery in the presence of a strong signal-signal beat interference. Compared with the conventional method, the proposed DLEDD scheme can reduce the optimum CSPR by ∼8 dB, leading to a significant signal-to-noise ratio improvement of ∼5.8 dB according to simulation results. We experimentally demonstrate the optical field reconstruction for a 28-GBaud 16-ary quadrature amplitude modulation signal after 80-km single-mode fiber transmission based on the proposed DLEDD scheme with a 2-dB optimum CSPR. The results show that the proposed DLEDD scheme could offer a high-performance solution for cost-sensitive applications such as data center interconnects, metro networks, and mobile fronthaul systems.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献