Carrier-assisted differential detection

Author:

Shieh William,Sun Chuanbowen,Ji Honglin

Abstract

AbstractTo overcome power fading induced by chromatic dispersion in optical fiber communications, optical field recovery is a promising solution for direct detection short-reach applications, such as fast-evolving data center interconnects (DCIs). To date, various direct detection schemes capable of optical field recovery have been proposed, including Kramers−Kronig (KK) and signal−signal beat interference (SSBI) iterative cancellation (IC) receivers. However, they are all restricted to the single sideband (SSB) modulation format, thus conspicuously losing half of the electrical spectral efficiency (SE) compared with double sideband (DSB) modulation. Additionally, SSB suffers from the noise folding issue, requiring a precise optical filter that complicates the receiver design. As such, it is highly desirable to investigate the field recovery of DSB signals via direct detection. In this paper, for the first time, we propose a novel receiver scheme called carrier-assisted differential detection (CADD) to realize optical field recovery of complex-valued DSB signals via direct detection. First, CADD doubles the electrical SE compared with the KK and SSBI IC receivers by adopting DSB modulation without sacrificing receiver sensitivities. Furthermore, by using direct detection without needing a precise receiver optical filter, CADD can employ cost-effective uncooled lasers as opposed to expensive temperature-controlled lasers in coherent systems. Our proposed receiver architecture opens a new class of direct detection schemes that are suitable for photonic integration analogous to homodyne receivers in coherent detection.

Funder

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3