Control of dual-channel optical bistability in a carbon nanotube nanoresonator coupled with a metallic nanoshell

Author:

Long Lin-Wen,Zhao Wen-Hua,Peng Yu-XiangORCID,Jiang Yang-Yang,Wang Xin-Jun,Li Jian-Bo

Abstract

We theoretically present a flexible method to obtain dual-channel optical bistability (OB) in a coupled system consisting of a metallic nanoshell (MNS) and a carbon nanotube (CNT) nanomechanical resonator (NR) beyond the dipole approximation. The MNS is made of a metallic core and a dielectric shell. The results show that, the four-wave mixing signal is suppressed significantly due to multipole polarizations in comparison to that in the dipole approximation. Also, the four-wave mixing signal can be enhanced greatly with the exciton-phonon coupling strength g increasing. Especially, bistability phase diagrams plotted show that, for a given shell thickness, it is realizable to achieve one (or two) bistable region(s) by adjusting the pumping intensity (or the MNS-NR distance). In a strong exciton-plasmon coupling regime, OB can be switched from single-channel to dual-channel by only changing the dielectric shell thickness or the metallic core radius. This indicates that the system proposed can behave as a channel-tunable bistable switch. Our findings may have potential applications in various domains such as quantum communication and optical functional devices.

Funder

Changsha Science and Technology Planning Project

Research Foundation of Education Bureau of Hunan Province

Natural Science Foundation of Hunan Province

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3