Plexcitonic strong coupling: unique features, applications, and challenges

Author:

Zhao Qian,Zhou Wen-Jie,Deng Yan-Hui,Zheng Ya-Qin,Shi Zhong-Hong,Kee Ang LayORCID,Zhou Zhang-Kai,Wu LinORCID

Abstract

Abstract There have recently been remarkable achievements in turning light–matter interaction into strong-coupling quantum regime. In particular, room-temperature plexcitonic strong coupling in plasmon-exciton hybrid systems can bring promising benefits for fundamental and applied physics. Herein, we review theoretical insight and recent experimental achievements in plexcitonic strong coupling, and divide this review into two main parts. The first part briefly introduces the general field of strong coupling, including its origin and history, physical mechanisms and theoretical models, as well as recent advanced applications of strong coupling, such as quantum or biochemical devices enabled by optical strong coupling. The second part concentrates on plexcitonic strong coupling by introducing its unique features and new potentials (such as single-particle ultrastrong coupling, strong-coupling dynamics in femtosecond scale) and discusses the limitations and challenges of plexcitonic strong coupling. This will also be accompanied by potential solutions, such as microcavity-engineered plexcitonics, spectral hole burning effects and metamaterial-based strong coupling. Finally, we summarize and conclude this review, highlighting future research directions and promising applications.

Funder

Guangdong Natural Science Funds

National Natural Science Foundation of China

Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program

Key RD Program of Guangdong Province

National Research Foundation Singapore

Fundamental Research Funds for the Central Universities, Sun Yet-sen University

National Research Foundation (NRF) Singapore and the National Natural Science Foundation of China (NSFC) Joint Grant

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference274 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3