Levitating the noise performance of ultra-stable laser cavities assisted by a deep neural network: the non-intuitive role of the mirrors
-
Published:2023-04-27
Issue:10
Volume:31
Page:15953
-
ISSN:1094-4087
-
Container-title:Optics Express
-
language:en
-
Short-container-title:Opt. Express
Author:
Dickmann J.1ORCID,
Shelling Neto L.1ORCID,
Gaedtke M.12,
Kroker S.13
Affiliation:
1. Laboratory for Emerging Nanometrology
2. Leibniz Universität Hannover
3. Physikalisch-Technische Bundesanstalt
Abstract
The most precise measurand available to science is the frequency of ultra-stable lasers. With a relative deviation of 4 × 10−17 over a wide range of measuring times between one second and 100 seconds, the smallest effects in nature can thus be made measurable. To enable cutting-edge precision, the laser frequency is stabilized to an external optical cavity. This complex optical device must be manufactured to the highest standards and shielded from environmental influences. Given this assumption, the smallest internal sources of perturbation become dominant, namely the internal noise of the optical components. In this work, we present the optimization of all relevant noise sources from all components of the frequency-stabilized laser. We discuss the correlation between each individual noise source and the different parameters of the system and discover the significance of the mirrors. The optimized laser offers a design stability of 8 × 10−18 for an operation at room temperature for measuring times between one second and 100 seconds.
Funder
European Association of National Metrology Institutes
Deutsche Forschungsgemeinschaft
Publisher
Optica Publishing Group
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献