Low-loss nodeless hollow-core anti-resonant soft glass fiber for the 4 µm mid-infrared spectral range

Author:

Chang Yanjie12,Zhang Hao12ORCID,Xu Yantao12,Liu Chengzhen12,Xiao Xusheng12ORCID,Guo Haitao123

Affiliation:

1. Xi’an Institute of Optics and Precision Mechanics

2. University of Chinese Academy of Sciences (UCAS)

3. Shanxi University

Abstract

Infrared soft glass hollow-core anti-resonant fibers (HC-ARF) with low loss, excellent mode purity, and robust high-power transmission capabilities have vast potential in mid-infrared high-power laser transmission and biomedical fields. Despite this, the fabrication of these fibers still faces formidable challenges, coupled with an incomplete understanding of the transmission characteristics, thereby amplifying the value of further exploration. In this paper, we fabricate a six-cell nodeless infrared HC-ARF originating from purified sulfide glass, synthesized using a meticulous “stack-and-draw” method and dual-gas-path pressure control method. Notably, we experimentally validate the theoretical performance expectations of this fiber. The fiber exhibits outstanding transmission capabilities and optical transmission quality, characterized by a recorded loss of 0.56 dB/m at 4.79 µm. This is already comparable to traditional step-index sulfide fibers, fully demonstrating its tremendous research value and application potential. Our work has successfully fabricated the lowest loss anti-resonant fiber on record in the mid-infrared field, propelling the development of sulfide HC-ARFs into a new phase and laying a solid foundation for the realization of fiber applications in laser transmission and the biomedical field.

Funder

Special Research Assistant Program of Chinese Academy of Sciences

Key Research and Development Projects of Shaanxi Province

Natural Science Foundation of Shaanxi Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3