Mode-insensitive and mode-selective optical switch based on asymmetric Y-junctions and MMI couplers

Author:

Sun Shijie,Yu Qidong,Che Yuanhua,Lian Tianhang,Xie Yuhang,Zhang Daming,Wang XibinORCID

Abstract

Driven by the large volume demands of data in transmission systems, the number of spatial modes supported by mode-division multiplexing (MDM) systems is being increased to take full advantage of the parallelism of the signals in different spatial modes. As a key element for photonic integrated circuits, the multimode waveguide optical switch (MWOS) is playing an important role for data exchange and signal switching. However, the function of the traditional MWOS is simple, which could only implement the mode-insensitive or mode-selective switching function; it is also difficult to scale to accommodate more spatial modes because of the limitation of the device structure. Therefore, it is still challenging to realize a multifunctional and scalable MWOS that could support multiple modes with low power consumption and high flexibility. Here, we propose and experimentally demonstrate a multifunctional MWOS based on asymmetric Y-junctions and multimode interference (MMI) couplers fabricated on a polymer waveguide platform. Both mode-insensitive and mode-selective switching functions can be achieved via selectively heating different electrode heaters. The fabricated device with the total length of ∼0.8  cm shows an insertion loss of less than 12.1 dB, and an extinction ratio of larger than 8.4 dB with a power consumption of ∼32  mW for both mode-insensitive and mode-selective switching functions, at 1550 nm wavelength. The proposed MWOS can also be scaled to accommodate more spatial modes flexibly and easily, which can serve as an important building block for MDM systems.

Funder

Jilin Province Development and Reform Commission Project

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3