Polarization-based probabilistic discriminative model for quantitative characterization of cancer cells

Author:

Wan Jiachen1,Dong Yang1,Xue Jing-Hao2,Lin Liyan3,Du Shan4,Dong Jia1,Yao Yue1,Li Chao3,Ma Hui1

Affiliation:

1. Tsinghua University

2. University College London

3. Fujian Medical University Cancer Hospital

4. University of Chinese Academy of Sciences Shenzhen Hospital

Abstract

We propose a polarization-based probabilistic discriminative model for deriving a set of new sigmoid-transformed polarimetry feature parameters, which not only enables accurate and quantitative characterization of cancer cells at pixel level, but also accomplish the task with a simple and stable model. By taking advantages of polarization imaging techniques, these parameters enable a low-magnification and wide-field imaging system to separate the types of cells into more specific categories that previously were distinctive under high magnification. Instead of blindly choosing the model, the L0 regularization method is used to obtain the simplified and stable polarimetry feature parameter. We demonstrate the model viability by using the pathological tissues of breast cancer and liver cancer, in each of which there are two derived parameters that can characterize the cells and cancer cells respectively with satisfactory accuracy and sensitivity. The stability of the final model opens the possibility for physical interpretation and analysis. This technique may bypass the typically labor-intensive and subjective tumor evaluating system, and could be used as a blueprint for an objective and automated procedure for cancer cell screening.

Funder

National Natural Science Foundation of China

Shenzhen Bureau of Science and Innovation

Beijing Municipal Administration of Hospitals’ Youth Programme

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3