Unsupervised learning of pixel clustering in Mueller matrix images for mapping microstructural features in pathological tissues

Author:

Wan Jiachen,Dong Yang,Yao Yue,Xiao Weijin,Huang RuqiORCID,Xue Jing-Hao,Peng Ran,Pei Haojie,Tian Xuewu,Liao Ran,He HonghuiORCID,Zeng Nan,Li Chao,Ma HuiORCID

Abstract

AbstractIn histopathology, doctors identify diseases by characterizing abnormal cells and their spatial organization within tissues. Polarization microscopy and supervised learning have been proved as an effective tool for extracting polarization parameters to highlight pathological features. Here, we present an alternative approach based on unsupervised learning to group polarization-pixels into clusters, which correspond to distinct pathological structures. For pathological samples from different patients, it is confirmed that such unsupervised learning technique can decompose the histological structures into a stable basis of characteristic microstructural clusters, some of which correspond to distinctive pathological features for clinical diagnosis. Using hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) samples, we demonstrate how the proposed framework can be utilized for segmentation of histological image, visualization of microstructure composition associated with lesion, and identification of polarization-based microstructure markers that correlates with specific pathology variation. This technique is capable of unraveling invisible microstructures in non-polarization images, and turn them into visible polarization features to pathologists and researchers.

Publisher

Springer Science and Business Media LLC

Reference47 articles.

1. Kumar, V., Abbas, A. K., Aster, J. C. & Elsevier, C. Robbins & Cotran Pathologic Basis of Disease. Tenth edition, (Elsevier, Philadelphia, 2020).

2. Xu, S. et al. The role of collagen in cancer: from bench to bedside. J. Transl. Med. 17, 309 (2019).

3. Osborn, M. & Weber, K. Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab. Investig. 48, 372–394 (1983).

4. Nelson, R. S. & Epstein, J. I. Prostatic carcinoma with abundant Xanthomatous cytoplasm: foamy gland carcinoma. Am. J. Surg. Pathol. 20, 419–426 (1996).

5. Fischer, A. H., Jacobson, K. A., Rose, J. & Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb. Protoc. 2008, prot4986 (2008).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3